Skip to product information
1 of 2

Synergistic Research

Synergistic Research Foundation IFT Jumpers

Regular price $175.00 USD
Regular price Sale price $175.00 USD
Sale Sold out
Shipping calculated at checkout.

This product may take 3 to 5 business days to fulfill.

 

When bi-wiring was introduced in the late 1970s amplifiers and speakers benefited due to the relatively modest performance of the speakers and cables of the day. Electronics, speakers, and cables were simply not as advanced as they are today. In fact speaker cables were little more than unshielded 16 gauge lamp cord made from cheap copper with poor dielectrics so doubling up on zip wire was better than nothing. Unfortunately as electronics and speakers advanced over the intervening years most speaker cable designs have not kept pace where bi-wire terminations are concerned. For today’s high end speakers to perform their best it’s absolutely critical they be fed a phase correct signal where all frequencies are in perfect phase alignment across the frequency spectrum. Low level information relating to spacial queues, holography, image placement, low frequency impact and control as well as high frequency extension without brightness are all aspects of a phase correct signal reaching your speakers. We discovered nearly 20 years ago that it’s difficult enough to get one cable in perfect phase alignment across the entire frequency spectrum, much less to get two cables running in parallel while feeding the very different loads of high frequency and low frequency binding posts on a bi-wire speaker. When signal is split between higher and lower frequencies in separate cable runs phase distortion is inevitable. IFT (Integrated Frequency Termination) provides speed, PRAT (Pace, Rhythm and Timing) and high frequency extension in perfect alignment with low frequencies better than any bi-wire cable geometry can. This is because the full spectrum of frequencies and phase information is present in the cable’s entirety, and not split into separate runs which changes the signal’s phase alignment when frequencies are segregated into separated cable runs.